Howmar Boats Finest 15′ Sloop: Designers Choice (“DC”)

Designers Choice: A Small Sloop

Originally designed by the naval architects Sparkman & Stephens, and built circa Edison New Jersey in the late ”70s through mid-’80s, the Designers Choice (“DC”) is a fibreglass-hulled sailboat with length overall (LOA) of 14′ 10.5″, length at the waterline of 12′ 9″ and beam of 6′ 1″. She weighs in at 315 lbs.

The draft of the DC varies from 5″ (centerboard up) to 3′ 0″ (centerboard down). Aft freeboard is 1′ 2″.

The mast is tall and the sail area of the mainsail is 82 sq ft; that of the jib is 28 sq ft. Crew capacity is 900 lbs. In my experience, 3 adults and 3 children can be comfortable on board.

DC Standard Features

She features:

  • Black anodized aluminum spars.
  • Grooved mast with loose footed mainsail fitted with luff slugs.
  • Stainless steel chain plates, headstay & shrouds.
  • Deluxe heave duty fittings.
  • Four-part mainsheet with quick release cam cleat on centerboard trunk.
  • All hardware  mounted with through-bolts or drilled and tapped into aluminum backing plates.
  • Controllable outhaul, boom vang and Cunningham.
  • Kick-up rudder with foam-filled floating black anodized aluminum tiller and universal hiking stick.
  • 1.25″ vinyl rub-rail.
  • Non-leaking centerboard pin above the waterline and cockpit sole for easy access.
  • Hand laid-up heavy duty mat and roving hull construction
  • White gelcoat finish.
  • Molded-in skid-resistant side seats and cockpit sole.
  • Large covered stowage locker under afterdeck.
  • Durable dacron mainsail and jib.
  • Jib window and jiffy reefing are standard.

My DC

I have owned my DC since 2003. I have had 3 sailboats in my life and this is a decent little craft. She was built in 1979, making her 38 years. Several photographs are included below. A copy of the original Howmar Designers Choice is provided for download, as well.

1979 Designers Choice with original sails
1979 Designers Choice on the beach
Tanaka 3 HP outboard kicker
1979 Designers Choice on Trailer. Sails are original. She is launched from the yard onto the Chesapeake Bay. She is kept covered when not in use.

 

Opioid-induced respiratory depression and monitoring patients diagnosed with obstructive sleep apnea

HIMSS Future Care posting:

Managing patients on the general care floor (GCF) who are either at risk or “diagnosed with obstructive sleep apnea (OSA), and those in particular who meet the requirements of the STOP-BANG criteria for OSA, can be quite challenging. The ECRI Institute, a federally-certified patient safety and research organization, has identified in its 2017 list of Top 10 Health Technology Hazards “Undetected Opioid-Induced Respiratory Depression” as Number 4 [1]. Opioids used for treatment of acute postoperative pain is rather commonplace, and patients at-risk for OSA, if left unattended, can experience anoxic brain injury or death.

Medical Device Plug and Play

Originally posted at MedicalConnectivity.com, the discussion surrounding plug-and-play medical devices focused on the ability to have true interoperability from a semantic and physical perspective. This post was originally written in 2009 surrounding the need for better medical device plug and play interoperability and integration, in much the same way a USB-enabled accessory purchased for a standard computer is recognized by the drivers once plugged into the computer.

Nanotechnology: A Key to Future Diagnosis and Treatment?

Will the future of medicine rely on nanotechnology for treatment of disease?

The average size of the avian influenza virus is on the order of 100 nanometers, or 0.1 microns, which is of the order of nanotechnology. That a virus so small can wreak such havoc on the human body is a testament to the complex mechanisms associated with these infections. The ability to ward off such infections is also a testament to the awesome nature of the human immune system. By comparison, the width of a typical human hair is on the order of 100,000 nanometers (estimates put the range at 50,000 – 150,000, depending on the specific type of hair).

Now, consider the field of nanotechnology which focuses on the manufacture and fielding of mechanical and electronic devices of microscopic size, typically on the order of 100 nanometers or smaller. The National Cancer Institute (NCI) provides a fairly detailed overview of the use of nanotechnology in cancer treatment, and the NCI Alliance for Nanotechnology in Cancer is an initiative that provides a focal point for public and private investigation for the application of nanotechnology to the treatment of cancer. Researchers and companies have been investigating the manufacture of devices of this order of magnitude and smaller for application in the treatment of disease. A major focus for nanotechnology in healthcare is, not surprisingly, the treatment of cancer. Specific methods and modes of delivery vary. Examples include outfitting little “robots” with markers that will burrow into and attach themselves to cancerous cells for the purpose of enabling treatment and destruction of malignant cells. A major benefit of this approach versus traditional methods of radiation and chemotherapy is that the malignancies can be targeted directly without attacking or otherwise molesting healthy cells. This is a major advancement, since many of the current therapies that attack cells indiscriminately will kill both healthy as well as malignant cell material. When battling this terrible disease the last thing needed is to destroy those healthy cells upon which the individual depends for sustenance and survival. Thus, nanotechnology provides a mechanism for delivering targeted, customized, tailored therapy.

What about nanotechnology for diagnosis?

While we are on the cutting edge of the application of these technologies, the vision is real, and it is extremely promising. Treatment is only one aspect of nanotechnology use. Diagnosis is another area, in which nanoparticles can be used to assist in imaging of potential malignancies. While almost a cliché, the aging of the baby-boomer population will drive a number of these new technologies, applications, and initiatives. It is almost a tautology that early diagnosis of disease  translates into a higher likelihood of survival. Technologies that support early diagnosis are, therefore, of great value and will enable better, more efficient, and  more accurate treatment of disease going forward. As a member of this generation (albeit, at the tail end), I am very encouraged and supportive of this research. I recall some 17 years ago when my mother passed away from breast cancer that the use of exotic technologies such as nanotechnology was barely an inkling. Indeed, the three oft-used mechanisms for treating cancer have remained surgery, irradiation, or poisoning (chemotherapy). It has only been within the past 10 years or so in which alternative therapies have been devised and discovered that are not simply variants of these three. Research into the targeted treatment of cancer by destroying the genetic material within malignant cells so that they cannot reproduce or cannot receive nourishment is an astonishing advancement and offers great future promise—a testament to human ingenuity, talent, innovation, and creativity. As in vitro and in vivo medicine evolve, such future-looking technologies will be essential in terms of early diagnoses and intervention.

Can medical device integration facilitate diagnosis and treatment?

One cannot control what one cannot measure. In vivo measurements are necessary to determine whether any treatment paradigm is working: comparison pre- and post-treatment to determine the correlation and association of a treatment modality to establish intended effect. In later posts, I discuss the use of data taken from medical devices at the point of care to facilitate clinical decision making. These data, whether obtained from the patient externally or internally form the basis for identifying the state of the patient and trends towards improvement or decompensation.

A suggested method to control heart rate pacing and stroke volume in left-ventricular assist devices and for patients undergoing heart transplantation

Controller Design Concept

Update: this weblog article has been updated recently and a PDF of the document along with the new article is available here: Autonomic Heart Rate Controller Device Concept

I present a concept for autonomic cardiac pacing as a method to augment existing physiological pacing for both ventricular assist devices (VAD) and heart transplantations. The following development represents a vision and reflects an area that has yet to be fully exploited in the field. Therefore, the analysis is meant to be a starting point for further study in this area. Furthermore, an automatic control system methodology for both heart rate and contractile force (stroke volume) of patients having either an artificial left ventricular assist device (LVAD) or who have experienced degenerative performance of the Sinoatrial node is suggested. The methodology is described both in terms of a device and associated operational framework, and is based on the use of the naturally-occurring hormones epinephrine, norepinephrine, and dopamine contained in the return blood flow through the superior vena cava. The quantities of these hormones measured in the blood stream are used to derive a proportional response in terms of contractile force and pacing of the Sinoatrial node. The method of control suggests features normally described using cyclic voltammetry, expert systems, and feedback to pacing an artificial assist device.

Medical Device Data and Modeling for Clinical Decision Making

Medical Device Data, Modeling & Simulation

This cutting-edge volume is the first book that provides practical guidance on the use of medical device data for bioinformatics modeling purposes. Professionals learn how to develop original methods for communicating with medical devices within healthcare enterprises and assisting with bedside clinical decision making. The book guides in the implementation and use of clinical decision support methods within the context of electronic health records in the hospital environment. Supported with over 100 illustrations, this all-in-one resource discusses key concepts in detail and then presents clear implementation examples to give professionals a complete understanding of how to use this knowledge in the field.

“Medical Device Data and Modeling for Clinical Decision Making” Content Overview:

  • Introduction to Physiological Modeling in Medicine: A Survey of Existing Methods, Approaches and Trends.
  • Simulation and Modeling Techniques.
  • Introduction to Automatic Control Systems Theory and Applications.
  • Physical System Modeling and State Representation.
  • Medical Device Data Measurement, Interoperability, Interfacing and Analysis.
  • Systems Modeling Example Applications.
  • Modeling Benefits, Cautions, and Future Work.

 

John R. Zaleski Dissertation (1996): Weaning from Postoperative Mechanical Ventilation

Dissertation Title: “Modeling Postoperative Respiratory State in Coronary Artery Bypass Graft Patients: A Method for Weaning Patients from Mechanical Ventilation”

“Physicians, nurses, and other health care workers are facing a problem: provide affordable, quality health care to patients while at the same time satisfy cost constraints imposed on them by insurance companies and government agencies. Cost-cutting measures in many industries, including health care, have resulted in down-sizing “solutions” which achieve their goal of reducing costs by eliminating personnel. This approach, however, can take a physical and psychological toll on those remaining care-providers involved in the daily activity of saving lives. Technology has made an attempt to come to the rescue of these individuals by enabling easy-access to data on patients within their care.”

“Much of this information, though, is in a a raw and unprocessed form, and is generally large in quantity. For the weary health-care provider, the effort involved in viewing and processing this information in real-time can be a deterrent to its use. Few places bombard the health-care provide with more real-time data than the Surgical Intensive Care Unit, or SICU. Patients arrive in the SICU from surgery, their lives dependent on the talents of the critical care staff and the proximity of life-sustaining technologies for survival. While it is important to maintain all of the patient’s physiological functions during the critical 24 hour period following surgery, two of the most vital are heart function and breathing. Whereas heart function is maintained through the careful administration of drugs to reduce the strain of pumping blood through the body, breathing is accomplished directly through the use of a mechanical ventilator which breathes for the patient until spontaneous respiratory function is regained.”

This Ph.D. dissertation documents the research and development of a real-time predictor of patient recovery and viability for weaning from postoperative mechanical ventilation.

Weaning from postoperative mechanical ventilation isa key process in surgical intensive care. According to the SCCM (Source: Society of Critical Care Medicine, 2006), ICU patients occupy only 10% of the inpatient beds, but account for almost 30% of the acute care hospital costs. A key aspect of care in ICUs relates to weaning from postoperative mechanical ventilation.

Employing Medical Device Integration to Help us Age Gracefully and Care for our Health

The aging population, health & wellness

Estimates by the U.S. Census Bureau expect the population of Americans aged 65 and older to increase by more than a factor of two between 2010 and 2050 [1]. At the same time estimates of healthcare expenditure increases between 2007 and 2017 show an increase to nearly 20% of GDP in this period [2]. These estimates were made prior to the recent financial crisis that began during the Fall of 2008. Further compounding this increasing demand and the concomitant increase in costs is the availability of allied healthcare professionals. Some studies [3] identify the likely decrease in the number of physicians entering any number of key specialty areas, including cardiology (20% decrease by 2020), geriatrics (35% of current demand met today), rheumatology (38 day average wait for a new appointment), and primary care (on the verge of collapse). Those of us who are baby boomers are on the leading edge of this demand and, in order to mitigate and minimize the cost impacts on our children, it is our challenge and responsibility to innovate and meet these challenges without passing along unnecessary burdens to our children and grandchildren.

Age-related ailments & managing age-related health issues

For most of us, aging means more frequent and severe afflictions. Taking care of our health by improving diet, exercising, and maintaining an otherwise active lifestyle is essential to ensure a high quality life. Even with increased vigilance chronic ailments can affect us later in life, brought on both by our genetics and consequentially due to the lifestyles we’ve led in our youths. Ailments such as dementia, coronary artery disease, Alzheimer’s, myocardial infarction, congestive heart failure, macular degeneration, osteoporosis, hypertension, chronic obstructive pulmonary disease, diabetes, and others take their toll. Managing chronic diseases is costly from a logistical perspective in terms of time and money. However, even more to the point, effective and quality oversight of patients with chronic ailments requires regular review, screening, and monitoring of patients. This is further complicated by the need to serve patients who lack the means or are physically incapable of leaving their homes for extended periods. Telehealth and remote monitoring are a means by which a case manager—an individual assigned to oversee the care of chronically ill patients within a home-health setting—can review patient information on a regular basis (for example, daily) and support both the patient and the primary care provider. Furthermore, Intensive care units and emergency departments are becoming more crowded. Individuals with insurance are going to EDs because they cannot find satisfaction in terms of prompt scheduling with their gatekeepers (family practitioners). The quantity of individuals with chronic ailments is on the rise (stroke, CHF, diabetes, COPD, etc.) This is in part due to the fact that people are living longer. At the same time the Medicare and SS systems will not be able to sustain the growth in population over age 65. This means that working individuals will increasingly bear the financial burden for us “boomers.” As a result of increased longevity and the fiscal challenges, the retirement age will increase.

Medical device data, and medical device integration to assist in aging and health issues

So, what do we do? Well, several things: first, technology in the form of remote data collection, reporting devices and software will become more prevalent: glucometers, BP cuffs, spirometers and associated software will be more readily available for direct communication with personalized electronic health records. If the purpose of a typical visit is to take BP and diabetic assessments, this can be handled most by collecting data at the point of care (home) and transmitting to the physician’s office for assessment. Such also applies to nursing and assisted living facilities. Next, the technical infrastructure required to transmit and store these data will be required. Paying for this infrastructure could come from a number of sources. One possibility: most everyone nowadays has access to cable television. Cable companies could offer devices that integrate with existing modems to collect and transmit data to the FP, together with complementary emails to next of kin (e.g. “Your mother’s BP as of 8:10 this morning was 145/89”). Other technologies that can be used to evaluate and monitor chronic ailments such as macular degeneration can further reduce costs by providing video cameras at point of care whereby opthalmologists can review retinal changes without requiring an elderly individual to be transported at expense and time to a hospital or office. In addition, support for remote consults via VoIP and video can be supported over the same network. This empowers the remote provider with the ability to interact with the patient All of these technologies are in use in remote pockets around the world today. But, they will become more prevalent. These technology implementations will reduce costs and provide for more personalized care in comfortable settings (homes). Of course, nothing takes the place of the tactile hands-on. But, for routine visits the above will be invaluable. In terms of the software technologies, personalized medicine will become the norm (eventually). Telehealth will be key. But, also, support for automated workflow in the acute care environment will need to be augmented. This means fully integrating all data into the enterprise HIS.

Remote patient monitoring requires medical device integration to facilitate health care management

The U.S. Department of Health and Human Services through its Office of the National Coordinator for Health Information Technology, published operational scenarios focused on providing key information to assist in harmonizing standards on the implementation, certification, and policy implications for robust remote patient monitoring [4]. Included in this assessment are requirements on interacting with personalized health records and enterprise health information systems. The approaches to advancing remote monitoring include both seamless communication from medical devices at the point of care (i.e., in a patient’s home setting) and with a case manager and primary care provider both through electronic transfer, storage, and display of health information and remote video and audio interaction with patients in the same home health setting.

Remote health monitoring to empower the aging population

Technology is not the silver bullet, but those described above are key enablers for remote health monitoring. Of course, the use of technology carries with it the implication that sufficient underlying infrastructure exists. This is not always the case in remote areas of the country. Satellite, cable, and fiber optic technologies are fairly extensive within the continental United States, but pockets and regions exist in which this is not the case. Therefore, a combined effort to extend the communications infrastructure must continue together with a unified effort to standardize and train and “in-service” individual care providers on these technologies must occur. One of the best mechanisms for enabling this is through the local hospitals and their satellite clinics.

So, how long do we have? Well, the sooner the better. Successful telehealth and remote monitoring programs exist throughout the United States and worldwide today. We should ensure that our elected representatives direct healthcare expenditures towards several specific areas to promote growth and alignment to meet the objectives of remote monitoring. These include continuing alignment on electronic personalized health records, expansion of our underlying communications infrastructure, and promoting common standards of communication among these records so that, regardless of location, a patient can communicate his or her information to any physician and allied health professional within the country. In summary: common storage, homogeneous communication, standardized formats.

References

[1] Source: Population Division, U.S. Census Bureau, August 14th, 2008; Table 12: “Projections of the population by Age and Sex for the United States: 2010 to 2050 (NP2008-T12)”

[2] Cinda Becker, “Slow: Budget Danger Ahead,” Modern Healthcare, March 3rd 2008.

Medical Device Data and Modeling for Clinical Decision Making

This work combines much of the experience learned in medical device interoperability and clinical informatics I have gained over the course of the past 20+ years.

I have leveraged work from my Ph.D. and experience in product management of critical care. The device connectivity experience and lessons learned are documented in my first book. Text is available at Amazon.

“This cutting-edge volume is the first book that provides practical guidance on the use of medical device data for bioinformatics modeling purposes. Professionals learn how to develop original methods for communicating with medical devices within healthcare enterprises and assisting with bed-side clinical decision making…”

Citation: Zaleski, JR: Medical Device Data and Modeling for Clinical Decision Making, Artech House, 2010. ISBN: 978-1-60807-094-7

Contributing Author–Dictionary of Computer Science, Engineering, and Technology

Contributing author to the Dictionary of Computer Science, Engineering, and Technology

Zaleski, JR, (contributing Author), Dictionary of Computer Science, Engineering, and Technology, (CRC Press, Phil Laplante, Editor-in-Chief).