Introducing the Oxford Shell

I have been a water enthusiast my entire life–from power boating with my father as a child to sailing small sailboats as a teenager and eventually owning two sailboats (one large, one small) as an adult. I have also been an avid fan of rowing & sculling since my freshman year in college some thirty…. er, ah…a long time ago.

21 foot Oxford rowing shell – view 1

I recently acquired a stick-built Oxford shell (depicted). This is a wooden vessel… weighs somewhere on the order of 50 lbs or so… and is beautifully finished by the builder with multiple layers of varnish and a professional paint job below the water line. She is approximately 21 ft in length and a joy to row.

Some other photos follow this.

21 ft Oxford shell – a view of the Pantedosi rowing drop-in.

She features a Piantedosi rowing rigging (seat, stretchers, outriggers) and I have added a few things onto her, like a holder for my Garmin GPS unit and a seat-saver seat on top of the slide.

21 ft Oxford shell – in the water awaiting the rower.

She rides true and fast. I normally pace at about 20 strokes per minute, but have sprinted up to 24-26. She has just about a 2 ft beam. The key to stability is making sure the oars are in the water on the feather when getting in and out. Stability, balance and grace are the essence of rowing and it is like meditation rowing her.

Oxford shell on the Elk River; Elkton, MD

I am developing some rowing apps in iOS and Swift to assist in guiding and tracking her motion. As these are developed and rolled out, will be writing about them and sharing, as well.

Author: johnrzaleski_eqbr0v

John R. Zaleski, PhD, CAP, CPHIMS, is Chief Analytics Officer of Bernoulli, a leader in real-time connected healthcare. Dr. Zaleski brings 21 years of experience in researching and ushering to market devices and products to improve healthcare. He received his PhD from the University of Pennsylvania, with a dissertation that describes a novel approach for modeling and prediction of post-operative respiratory behavior in post-surgical cardiac patients. Dr. Zaleski has a particular expertise in designing, developing, and implementing clinical and non-clinical point-of-care applications for hospital enterprises. Dr. Zaleski is the named inventor or co-inventor on seven issued patents related to medical device interoperability. He is the author of numerous peer-reviewed articles on clinical use of medical device data, information technology and medical devices and wrote three seminal books on integrating medical device data into electronic health records and the use of medical device data for clinical decision making, including the #1 best seller of HIMSS 2015 on connected medical devices.

One thought on “Introducing the Oxford Shell”

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.