The DWT calculation is carried out in detail for a signal vector containing 8 data elements. The first step is to compute the averages and differences (divided by two) for each of the signal components. This is shown in Figures 1-4.

The next step involves computing the averages and differences of those averages and differences just computed. This is shown in Figures 5 and 6.

Finally, the last step involved is to compute the average and difference of the previous step. This is shown in Figure 7.

The discrete wavelet transform vector for the signal supplied is given by the bottom row, shown in Figure A-8. The color-coding is included to indicate where each of the computed differences (and the final average) is placed in the vector.

As the number of signal data points increases, so does the number of computations of averages and differences. This process lends itself quite readily to automation.